Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Applied Sciences ; 13(4):2440.0, 2023.
Article in English | MDPI | ID: covidwho-2242657

ABSTRACT

Human mobility influenced the spread of the COVID-19 virus, as revealed by the high spatiotemporal granularity location service data gathered from smart devices. We conducted time series clustering analysis to delineate the relationships between human mobility patterns (HMPs) and their social determinants in California (CA) using aggregated smart device tracking data from SafeGraph. We first identified four types of temporal patterns for five human mobility indicator changes by applying dynamic-time-warping self-organizing map clustering methods. We then performed an analysis of variance and linear discriminant analysis on the HMPs with 17 social, economic, and demographic variables. Asians, children under five, adults over 65, and individuals living below the poverty line were found to be among the top contributors to the HMPs, including the HMP with a significant increase in the median home dwelling time and the HMP with emerging weekly patterns in full-time and part-time work devices. Our findings show that the CA shelter-in-place policy had varying impacts on HMPs, with socially disadvantaged places showing less compliance. The HMPs may help practitioners to anticipate the efficacy of non-pharmaceutical interventions on cases and deaths in pandemics.

3.
Am J Respir Crit Care Med ; 206(7): 922, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2074434
4.
Environ Adv ; 9: 100280, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2049181

ABSTRACT

The growing literature demonstrating air pollution associations on COVID-19 mortality contains studies predominantly examining long-term exposure, with few on short-term exposure, and rarely both together to estimate independent associations. Because mechanisms by which air pollution may impact COVID-19 mortality risk function over timescales ranging from years to days, and given correlation among exposure time windows, consideration of both short- and long-term exposure is of importance. We assessed the independent associations between COVID-19 mortality rates with short- and long-term air pollution exposure by modeling both concurrently. Using California death certificate data COVID-19-related deaths were identified, and decedent residential information used to assess short- (4-week mean) and long-term (6-year mean) exposure to particulate matter <2.5µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3). Negative binomial mixed models were fitted on weekly census tract COVID-19 mortality adjusting for potential confounders with random effects for county and census tract and an offset for population. Data were evaluated separately for two time periods March 16, 2020-October 18, 2020 and October 19, 2020-April 25, 2021, representing the Spring/Summer surges and Winter surge. Independent positive associations with COVID-19 mortality were observed for short- and long-term PM2.5 in both study periods, with strongest associations observed in the first study period: COVID-19 mortality rate ratio for a 2-µg/m3 increase in long-term PM2.5 was 1.13 (95%CI:1.09,1.17) and for a 4.7-µg/m3 increase in short-term PM2.5 was 1.05 (95%CI:1.02,1.08). Statistically significant positive associations were seen for both short- and long-term NO2 in study period 1, but short-term NO2 was not statistically significant in study period 2. Results for long-term O3 indicate positive associations, however, only marginal significance is achieved in study period 1. These findings support an adverse effect of long-term PM2.5 and NO2 exposure on COVID-19 mortality risk, independent of short-term exposure, and a possible independent effect of short-term PM2.5.

5.
Pediatrics ; 150(3)2022 09 01.
Article in English | MEDLINE | ID: covidwho-1910742

ABSTRACT

BACKGROUND AND OBJECTIVES: Experts hypothesized increased weight gain in children associated with the coronavirus disease 2019 (COVID-19) pandemic. Our objective was to evaluate whether the rate of change of child body mass index (BMI) increased during the COVID-19 pandemic compared with prepandemic years. METHODS: The study population of 1996 children ages 2 to 19 years with at least 1 BMI measure before and during the COVID-19 pandemic was drawn from 38 pediatric cohorts across the United States participating in the Environmental Influences on Child Health Outcomes-wide cohort study. We modeled change in BMI using linear mixed models, adjusting for age, sex, race, ethnicity, maternal education, income, baseline BMI category, and type of BMI measure. Data collection and analysis were approved by the local institutional review board of each institution or by the central Environmental Influences on Child Health Outcomes institutional review board. RESULTS: BMI increased during the COVID-19 pandemic compared with previous years (0.24 higher annual gain in BMI during the pandemic compared with previous years, 95% confidence interval 0.02 to 0.45). Children with BMI in the obese range compared with the healthy weight range were at higher risk for excess BMI gain during the pandemic, whereas children in higher-income households were at decreased risk of BMI gain. CONCLUSIONS: One effect of the COVID-19 pandemic is an increase in annual BMI gain during the COVID-19 pandemic compared with the 3 previous years among children in our national cohort. This increased risk among US children may worsen a critical threat to public health and health equity.


Subject(s)
COVID-19 , Adolescent , Adult , Body Mass Index , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Humans , Pandemics , United States/epidemiology , Weight Gain , Young Adult
6.
Am J Respir Crit Care Med ; 206(4): 440-448, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1832816

ABSTRACT

Rationale: Ecological studies have shown air pollution associations with coronavirus disease (COVID-19) outcomes. However, few cohort studies have been conducted. Objectives: To conduct a cohort study investigating the association between air pollution and COVID-19 severity using individual-level data from the electronic medical record. Methods: This cohort included all individuals who received diagnoses of COVID-19 from Kaiser Permanente Southern California between March 1 and August 31, 2020. One-year and 1-month averaged ambient air pollutant (particulate matter ⩽2.5 µm in aerodynamic diameter [PM2.5], NO2, and O3) exposures before COVID-19 diagnosis were estimated on the basis of residential address history. Outcomes included COVID-19-related hospitalizations, intensive respiratory support (IRS), and ICU admissions within 30 days and mortality within 60 days after COVID-19 diagnosis. Covariates included socioeconomic characteristics and comorbidities. Measurements and Main Results: Among 74,915 individuals (mean age, 42.5 years; 54% women; 66% Hispanic), rates of hospitalization, IRS, ICU admission, and mortality were 6.3%, 2.4%, 1.5%, and 1.5%, respectively. Using multipollutant models adjusted for covariates, 1-year PM2.5 and 1-month NO2 average exposures were associated with COVID-19 severity. The odds ratios associated with a 1-SD increase in 1-year PM2.5 (SD, 1.5 µg/m3) were 1.24 (95% confidence interval [CI], 1.16-1.32) for COVID-19-related hospitalization, 1.33 (95% CI, 1.20-1.47) for IRS, and 1.32 (95% CI, 1.16-1.51) for ICU admission; the corresponding odds ratios associated with 1-month NO2 (SD, 3.3 ppb) were 1.12 (95% CI, 1.06-1.17) for hospitalization, 1.18 (95% CI, 1.10-1.27) for IRS, and 1.21 (95% CI, 1.11-1.33) for ICU admission. The hazard ratios for mortality were 1.14 (95% CI, 1.02-1.27) for 1-year PM2.5 and 1.07 (95% CI, 0.98-1.16) for 1-month NO2. No significant interactions with age, sex or ethnicity were observed. Conclusions: Ambient PM2.5 and NO2 exposures may affect COVID-19 severity and mortality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19 Testing , California/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Nitrogen Dioxide , Particulate Matter/adverse effects , Particulate Matter/analysis
8.
Environ Res ; 208: 112758, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1637740

ABSTRACT

BACKGROUND: Air pollution exposure may make people more vulnerable to COVID-19 infection. However, previous studies in this area mostly focused on infection before May 2020 and long-term exposure. OBJECTIVE: To assess both long-term and short-term exposure to air pollution and COVID-19 incidence across four case surges from 03/1/2020 to 02/28/2021. METHODS: The cohort included 4.6 million members from a large integrated health care system in southern California with comprehensive electronic medical records (EMR). COVID-19 cases were identified from EMR. Incidence of COVID-19 was computed at the census tract-level among members. Prior 1-month and 1-year averaged air pollutant levels (PM2.5, NO2, and O3) at the census tract-level were estimated based on hourly and daily air quality data. Data analyses were conducted by each wave: 3/1/2020-5/31/2020, 6/1/202-9/30/2020, 10/1/2020-12/31/2020, and 1/1/2021-2/28/2021 and pooled across waves using meta-analysis. Generalized linear mixed effects models with Poisson distribution and spatial autocorrelation were used with adjustment for meteorological factors and census tract-level social and health characteristics. Results were expressed as relative risk (RR) per 1 standard deviation. RESULTS: The cohort included 446,440 COVID-19 cases covering 4609 census tracts. The pooled RRs (95% CI) of COVID-19 incidence associated with 1-year exposures to PM2.5, NO2, and O3 were 1.11 (1.04, 1.18) per 2.3 µg/m3,1.09 (1.02, 1.17) per 3.2 ppb, and 1.06 (1.00, 1.12) per 5.5 ppb respectively. The corresponding RRs (95% CI) associated with prior 1-month exposures were 1.11 (1.03, 1.20) per 5.2 µg/m3 for PM2.5, 1.09 (1.01, 1.17) per 6.0 ppb for NO2 and 0.96 (0.85, 1.08) per 12.0 ppb for O3. CONCLUSION: Long-term PM2.5 and NO2 exposures were associated with increased risk of COVID-19 incidence across all case surges before February 2021. Short-term PM2.5 and NO2 exposures were also associated. Our findings suggest that air pollution may play a role in increasing the risk of COVID-19 infection.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , COVID-19/epidemiology , Environmental Exposure/analysis , Humans , Incidence , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
9.
Environ Pollut ; 292(Pt B): 118396, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1482582

ABSTRACT

A growing number of studies report associations between air pollution and COVID-19 mortality. Most were ecological studies at the county or regional level which disregard important local variability and relied on data from only the first few months of the pandemic. Using COVID-19 deaths identified from death certificates in California, we evaluated whether long-term ambient air pollution was related to weekly COVID-19 mortality at the census tract-level during the first ∼12 months of the pandemic. Weekly COVID-19 mortality for each census tract was calculated based on geocoded death certificate data. Annual average concentrations of ambient particulate matter <2.5 µm (PM2.5) and <10 µm (PM10), nitrogen dioxide (NO2), and ozone (O3) over 2014-2019 were assessed for all census tracts using inverse distance-squared weighting based on data from the ambient air quality monitoring system. Negative binomial mixed models related weekly census tract COVID-19 mortality counts to a natural cubic spline for calendar week. We included adjustments for potential confounders (census tract demographic and socioeconomic factors), random effects for census tract and county, and an offset for census tract population. Data were analyzed as two study periods: Spring/Summer (March 16-October 18, 2020) and Winter (October 19, 2020-March 7, 2021). Mean (standard deviation) concentrations were 10.3 (2.1) µg/m3 for PM2.5, 25.5 (7.1) µg/m3 for PM10, 11.3 (4.0) ppb for NO2, and 42.8 (6.9) ppb for O3. For Spring/Summer, adjusted rate ratios per standard deviation increase were 1.13 (95% confidence interval: 1.09, 1.17) for PM2.5, 1.16 (1.11, 1.21) for PM10, 1.06 (1.02, 1.10) for NO2, and 1.09 (1.04, 1.14) for O3. Associations were replicated in Winter, although they were attenuated for PM2.5 and PM10. Study findings support a relation between long-term ambient air pollution exposure and COVID-19 mortality. Communities with historically high pollution levels might be at higher risk of COVID-19 mortality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , California/epidemiology , Environmental Exposure , Humans , Mortality , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2
10.
Environ Int ; 157: 106862, 2021 12.
Article in English | MEDLINE | ID: covidwho-1474522

ABSTRACT

BACKGROUND: Air pollution exposure has been associated with increased risk of COVID-19 incidence and mortality by ecological analyses. Few studies have investigated the specific effect of traffic-related air pollution on COVID-19 severity. OBJECTIVE: To investigate the associations of near-roadway air pollution (NRAP) exposure with COVID-19 severity and mortality using individual-level exposure and outcome data. METHODS: The retrospective cohort includes 75,010 individuals (mean age 42.5 years, 54% female, 66% Hispanic) diagnosed with COVID-19 at Kaiser Permanente Southern California between 3/1/2020-8/31/2020. NRAP exposures from both freeways and non-freeways during 1-year prior to the COVID-19 diagnosis date were estimated based on residential address history using the CALINE4 line source dispersion model. Primary outcomes include COVID-19 severity defined as COVID-19-related hospitalizations, intensive respiratory support (IRS), intensive care unit (ICU) admissions within 30 days, and mortality within 60 days after COVID-19 diagnosis. Covariates including socio-characteristics and comorbidities were adjusted for in the analysis. RESULT: One standard deviation (SD) increase in 1-year-averaged non-freeway NRAP (0.5 ppb NOx) was associated with increased odds of COVID-19-related IRS and ICU admission [OR (95% CI): 1.07 (1.01, 1.13) and 1.11 (1.04, 1.19) respectively] and increased risk of mortality (HR = 1.10, 95% CI = 1.03, 1.18). The associations of non-freeway NRAP with COVID-19 outcomes were largely independent of the effect of regional fine particulate matter and nitrogen dioxide exposures. These associations were generally consistent across age, sex, and race/ethnicity subgroups. The associations of freeway and total NRAP with COVID-19 severity and mortality were not statistically significant. CONCLUSIONS: Data from this multiethnic cohort suggested that NRAP, particularly non-freeway exposure in Southern California, may be associated with increased risk of COVID-19 severity and mortality among COVID-19 infected patients. Future studies are needed to assess the impact of emerging COVID-19 variants and chemical components from freeway and non-freeway NRAP.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19 Testing , California/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Male , Retrospective Studies , SARS-CoV-2
11.
J Allergy Clin Immunol Pract ; 9(10): 3621-3628.e2, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347677

ABSTRACT

BACKGROUND: Current studies of asthma history on coronavirus disease 2019 (COVID-19) outcomes are limited and lack consideration of disease status. OBJECTIVE: To conduct a population-based study to assess asthma disease status and chronic obstructive pulmonary disease (COPD) in relation to COVID-19 severity. METHODS: Patients diagnosed with COVID-19 (n = 61,338) in a large, diverse integrated health care system were identified. Asthma/COPD history, medication use, and covariates were extracted from electronic medical records. Asthma patients were categorized into those with and without clinical visits for asthma 12 or fewer months prior to COVID-19 diagnosis and labeled as active and inactive asthma, respectively. Primary outcomes included COVID-19-related hospitalizations, intensive respiratory support (IRS), and intensive care unit admissions within 30 days, and mortality within 60 days after COVID-19 diagnosis. Logistic and Cox regression were used to relate COVID-19 outcomes to asthma/COPD history. RESULTS: The cohort was 53.9% female and 66% Hispanic and had a mean age of 43.9 years. Patients with active asthma had increased odds of hospitalization, IRS, and intensive care unit admission (odds ratio 1.47-1.66; P < .05) compared with patients without asthma or COPD. No increased risks were observed for patients with inactive asthma. Chronic obstructive pulmonary disease was associated with increased risks of hospitalization, IRS, and mortality (odds ratio and hazard ratio 1.27-1.67; P < .05). Among active asthma patients, those using asthma medications had greater than 25% lower odds for COVID-19 outcomes than those without medication. CONCLUSIONS: Patients with asthma who required clinical care 12 or fewer months prior to COVID-19 or individuals with COPD history are at increased risk for severe COVID-19 outcomes. Proper medication treatment for asthma may lower this risk.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Adult , Asthma/epidemiology , COVID-19 Testing , Female , Hospitalization , Humans , Male , Pulmonary Disease, Chronic Obstructive/epidemiology , SARS-CoV-2
12.
Ann Epidemiol ; 58: 69-75, 2021 06.
Article in English | MEDLINE | ID: covidwho-1144483

ABSTRACT

PURPOSE: To examine characteristics of coronavirus disease 2019 (COVID-19) decedents in California (CA) and evaluate for disproportionate mortality across race/ethnicity and ethnicity/nativity. METHODS: COVID-19 deaths were identified from death certificates. Age-adjusted mortality rate ratios (MRR) were compared across race/ethnicity. Proportionate mortality rates (PMR) were compared across race/ethnicity and by ethnicity/nativity. RESULTS: We identified 10,200 COVID-19 deaths in CA occurring February 1 through July 31, 2020. The most frequently observed characteristics among decedents were age 65 years or above, male, Hispanic, foreign-born, and educational attainment of High School or below. MRR indicated elevated COVID-19 morality rates among Asian/Pacific Islander, Black, and Hispanic groups compared with the White group, with Black and Hispanic groups having the highest MRR at 2.75 (95%CI: 2.54-2.97) and 4.18 (95%CI: 3.99-4.37), respectively. Disparities were larger at younger ages. Similar results were observed with PMR, and patterns of age-racial/ethnic disparities remained in analyses stratified by education. Elevated PMR were observed in all ethnicity/nativity groups, especially foreign-born Hispanic individuals, relative to U.S.-born non-Hispanic individuals. These were generally larger at younger ages and persisted after stratifying by education. CONCLUSIONS: Differential COVID-19 mortality was observed in California across racial/ethnic groups and by ethnicity/nativity groups with evidence of greater disparities among younger age groups. Identifying COVID-19 disparities is an initial step toward mitigating disease impacts in vulnerable communities.


Subject(s)
COVID-19 , Ethnicity , Aged , California/epidemiology , Death Certificates , Hispanic or Latino , Humans , Male , Racial Groups , SARS-CoV-2 , United States
14.
Acta Pharm Sin B ; 10(7): 1205-1215, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-88716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) in silico, which suppressed SARS-CoV-2 replication in vitro. In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers (P < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.

SELECTION OF CITATIONS
SEARCH DETAIL